
Energy-Efficient Signal Processing Using FPGAs

Seonil Choi, Ronald Scrofano, and
Viktor K. Prasanna

Department of Electrical Engineering-Systems
University of Southern California

Los Angeles, USA

{seonilch, rscrofan, prasanna}@usc.edu

Ju-Wook Jang

Department of Electronic Engineering
Sogang University

Seoul, Korea

jjang@sogang.ac.kr

ABSTRACT
In this paper, we present techniques for energy-efficient de-
sign at the algorithm level using FPGAs. We then use these
techniques to create energy-efficient designs for two signal
processing kernel applications: fast Fourier transform (FFT)
and matrix multiplication. We evaluate the performance, in
terms of both latency and energy efficiency, of FPGAs in
performing these tasks. Using a Xilinx Virtex-II as the tar-
get FPGA, we compare the performance of our designs to
those from the Xilinx library as well as to conventional algo-
rithms run on the PowerPC core embedded in the Virtex-II
Pro and the Texas Instruments TMS320C6415. Our eval-
uations are done both through estimation based on energy
and latency equations and through low-level simulation. For
FFT, our designs dissipated an average of 60% less energy
than the design from the Xilinx library and 56% less than the
DSP. Our designs showed a factor of 10 improvement over
the embedded processor. These results provide concrete ev-
idence to substantiate the idea that FPGAs can outperform
DSPs and embedded processors in signal processing. Fur-
ther, they show that FPGAs can achieve this performance
while still dissipating less energy than the other two types
of devices.

Categories and Subject Descriptors
C.3 [Special Purpose and Application Based Systems]:
Real-time and embedded systems; C.1.3 [Processor Ar-
chitectures]: Other architecture styles—adaptable archi-
tectures

General Terms
Algorithms, Performance, Design

Keywords
Energy efficient design techniques, FPGA, FFT, matrix mul-
tiplicaiton, performance estimation
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1. INTRODUCTION
FPGAs have become an attractive option for implement-

ing signal processing applications because of their high pro-
cessing power and customizability. The inclusion of new
features in the FPGA fabric, such as a large number of em-
bedded multipliers, adds to this attractiveness. FPGAs can
now be considered for computationally demanding applica-
tions such as those in signal processing. Traditionally, the
performance metrics for signal processing and indeed, most
processing in general, have been latency and throughput.
However, with the proliferation of portable, mobile devices,
it has become increasingly important that systems are not
only fast, but that they are also energy efficient. One such
example is software-defined radio (SDR) [6]. Due to SDR’s
adaptivity and high computational requirement, an FPGA-
based system is very viable solution.
There are currently no commercially available FPGAs that

have both millions of gates and low-power features. Thus,
instead of low-level optimization techniques, in this paper,
we investigate and apply algorithmic techniques for mini-
mizing the energy dissipated by FPGAs in signal processing
applications. Our techniques can also be used for a next gen-
eration FPGA that has lower power dissipation feature as
well as high computing power. We apply the techniques pre-
sented here to the design of architectures and algorithms for
two well-known signal processing kernel applications: fast
Fourier transform (FFT) and matrix multiplication. The
FFT is the compute-intensive portion of broadband beam-
forming applications such as those generally used in SDR
and sensor networks. Matrix multiplication is also a fre-
quently used kernel operation in signal and image processing
systems including mobile and SDR systems. We compare
the latencies and energy dissipations of the energy-efficient
designs to those of Xilinx IPcore, a DSP, and an embedded
processor for the same signal processing kernel applications.
We use both high-level estimation (based on latency and
energy equations) and low-level simulation in our compar-
isons. These comparisons show that our proposed designs
using FPGAs can provide significant reductions in not only
latency but also energy dissipation.
The remainder of this paper is organized as follows. Sec-

tion 2 characterizes the sources of energy dissipation in FP-
GAs and presents algorithmic techniques for minimizing this
energy dissipation. The application of these techniques to
two signal processing kernel applications is presented in Sec-
tion 3. Section 4 explains our method for estimating the la-
tency and energy dissipation for the algorithms and architec-
tures presented in Section 3. It also details our method for



comparing FPGA implementations to DSPs and embedded
processors. Section 4.3 shows our high-level performance
estimates. Section 5 presents the results of low-level simula-
tions of selected implementations of the kernel applications.
Finally, Section 6 presents areas for future work.

2. ENERGY-EFFICIENT DESIGN
TECHNIQUES

We discuss techniques that can be applied to FPGA-based
designs to obtain energy efficiency. Note that, though the
terms are often used interchangeably, power and energy are
not the same. Energy is the product of average power dissi-
pation and latency. To understand energy dissipation, there-
fore, it is necessary to understand power dissipation and its
effect on latency and vice versa.
In this section, we first briefly describe sources of power

dissipation in FPGAs. We then present techniques for re-
ducing energy dissipation, some of which do so by lowering
power dissipation, others by lowering latency. Several low-
level and algorithm-level techniques for energy-efficient de-
sign are discussed. The main focus is algorithm-level tech-
niques. “Algorithm-level techniques” refers to those tech-
niques in algorithm development that can be used to reduce
energy dissipation.

2.1 Energy Dissipation in FPGAs
Several studies of FPGA power dissipation have recently

appeared in literature [13, 18]. These works show that power
dissipation in FPGA devices is due primarily to the pro-
grammable interconnects. In the Xilinx Virtex-II [17] fam-
ily, for example, it is reported that between 50% and 70%
of total power is dissipated in the interconnect, with the
remainder being dissipated in the clocking, logic, and I/O
blocks. This analysis differs from ASIC technology where
clock distribution often dominates power dissipation [18].
The sources of power dissipation between these two tech-
nologies are different because their interconnect structures
are composed disparately: FPGA interconnect consists of
pre-fabricated wire segments of various lengths, with used
and unused routing switches attached to each wire segment.
Another important factor affecting the power dissipation

in FPGAs is resource utilization [13]. In typical FPGA de-
signs, a majority of the resources are not used after the
configuration and thus they will not dissipate any dynamic
power. One more factor in determining power dissipation
is the switching activity, which is defined as the number of
signal transitions in a clock period. The switching activity
for each resource depends not only on the type of design but
also the input stimuli.
Understanding sources of power dissipation, we can now

discuss energy-efficient low-level and algorithm-level design
techniques for FPGA-based design.

2.2 Low-Level Design Techniques
In literature, there are many low-level power management

techniques that lead to energy savings when applied to de-
signing for FPGAs [13, 18]. Here, we discuss those low-level
techniques that provide control knobs for algorithm-level de-
sign.
One such technique is clock gating, which is used to dis-

able parts of the device that are not in use during the com-
putation. In the Virtex-II family of FPGAs, clock gating
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Figure 1: Power dissipation of various storage ele-
ment implementations as the function of the num-
ber of entries (Virtex-II XC2V1500, 150MHz, 50%
switching activity, 16 bits per entry)
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Figure 2: Power dissipation of various multipliers
as the function of precision (Virtex-II XC2V1500,
150MHz, 50% switching activity)

can be realized by using primitives such as BUFGMUX to
switch from a high frequency clock to a low frequency clock
[17]. BUFGCE can be used for dynamically driving a clock
tree only when the corresponding logic is used.
Choosing energy-efficient bindings is another technique.

A binding is a mapping of an operation to an FPGA com-
ponent. The ability to choose the proper binding is due to
the existence of several configurations for the same compu-
tation. Thus, different bindings affect FPGA energy dissipa-
tion. For example, in Figure 1, we show three possible bind-
ings for storage in Virtex-II FPGAs based on the number
of entries: registers, slice based RAM (SRAM), and embed-
ded Block RAM (BRAM). For large storage elements (those
with more than 48 entries) BRAM shows an advantage in
power dissipation over other implementations. Another ex-
ample is the choice between hard and soft IP. One such case
is the choice of multipliers: block multipliers, such as those
in the Xilinx Virtex-II and Altera Stratix, can be more effi-
cient than CLB-based multipliers (See Figure 2). All results
for Figure 1, Figure 2, and Figure 3 are obtained using the
techniques proposed in [3]. In developing an algorithm, a
designer can analyze the trade-offs that arise from various
bindings based on the design requirements.

2.3 Algorithm-Level Design Techniques
It is known that energy performance can be improved sig-

nificantly by optimizing a design at the algorithm level [11].
We summarize the algorithm-level techniques that can be
used to improve the energy performance of designs imple-
mented on FPGAs.



Architecture Selection: Since FPGAs provide the free-
dom to map various architectures, choosing the appropriate
architecture affects the energy dissipation. It plays a large
part in determining the amount of interconnect and logic to
be used in the design. Since interconnect dissipates a large
amount of power, minimizing the number of long wires be-
tween building blocks is beneficial [17]. Several past efforts
have identified various architecture families, each having dif-
ferent characteristics in terms of I/O complexity, memory
requirements, area, etc. [5, 9]. Based on the performance
needs and the limitations of the target FPGA chip, it is
possible to identify a suitable architecture. Identification of
an appropriate architecture for an algorithm ensures that we
begin with an efficient design most suitable for the perfor-
mance requirements and that there are various architecture
parameters that can be varied to explore trade-offs among
energy, latency, and area. For example, matrix multiplica-
tion can be implemented using a 1-D array (linear array) or
a 2-D array. A 2-D array dissipates more power from inter-
connect since more interconnects are required. Thus, it is
possible that more energy would be dissipated, depending
upon the resulting latency.
Module Disabling: In developing an algorithm, it is

possible to design the algorithm such that it utilizes the
clock gating technique to disable modules that are not in use
during the computation. For example, FFT computation
has many complex number multipliers to perform twiddle
factor computations (multiplication and addition/subtraction).
Because of the nature of the algorithm, some twiddle factors
are 1, −1, j, or −j and their computation can be bypassed.
Thus, the implementation of twiddle factor computation can
exploit clock gating to disable the unnecessary computation
modules. Another example is that some RAM implementa-
tions have sleep states so that power dissipation is reduced
when they are idle. Figure 3 shows the power dissipation
of SRAM (16 bits per entry) of various sizes. The disabled
memory dissipates less than 10% of the amount of power
that the enabled memory does. The power dissipation of
BRAM is even smaller than that of SRAM. Its power dis-
sipation is less than 1% of the power dissipation of enabled
memory. Because of these reduced power dissipations, en-
ergy dissipation is also reduced, provided that latency does
not increase too much.
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Figure 3: The effect on energy dissipation of the
disabling of a SRAM as a function of the number of
entries (Virtex-II XC2V1500, 150Mhz, 50% memory
access rate, 8 bits per entry)

Pipelining: Pipelining is an efficient design practice for
both time and energy performance. Many digital signal pro-

cessing applications process streaming data. For these appli-
cations with regular data flow, pipelining increases through-
put. Pipelining increases power dissipation, however, since
all logic in the design is continuously active. In FPGA de-
signs with streaming data, throughput is another important
factor in energy dissipation. Thus, in the pipelined design, a
modified version of the energy equation is Epipe = Pavg/Th,
where Th is the throughput of the design. Note that 1

Th
can

be considered the effective latency of the design. The effec-
tive latency accounts for the benefits of overlapping com-
putations in pipelining. All designs in this paper adopt
pipelining. Pipelining is one technique in which increas-
ing the power dissipation may decrease the overall energy
dissipation.
Parallel Processing: Parallel processing is an important

technique for reducing energy dissipation in FPGA systems.
In practice, the trade-off between pipelining and parallelism
is not distinct: merely replicating functional units rather
than using pipelining has the negative effect of increasing
area and wiring, which in turn increases the energy dissi-
pation. Instead, a more sophisticated approach to parallel
processing is needed. In Section 5, we will discuss this effect
in detail (See Figure 10).
Algorithm Selection: A given application is mapped

onto FPGAs differently by selecting different algorithms.
For example, using block matrix multiplication is the algorithm-
level design choice for larger matrix multiplication. In Fig-
ure 10, the block matrix multiplication is energy-efficient
choice for n > 24. In implementing the FFT, the choice
of radices affects the energy performance. For example, a
radix-4 based algorithm significantly reduces the number of
complex multiplications that would otherwise be needed if a
radix-2 based algorithm were used. All these algorithm se-
lections affect the architectures and the energy dissipation of
a design. The trade-offs between different algorithms should
be analyzed to achieve energy-efficient designs.

3. ENERGY-EFFICIENT DESIGN FOR SIG-
NAL PROCESSING APPLICATIONS

Using the algorithm-level techniques, we map two applica-
tions onto FPGAs: FFT and matrix multiplication. Each of
these is an important kernel applications in signal process-
ing. For each application, we describe our energy-efficient
design, including those of the aforementioned design tech-
niques that have been used.

3.1 Fast Fourier Transform
For FFT designs, we use the well known Cooley-Tukey

method. The calculation of an N-point FFT requires O(N)
operations for each of its log2(N) stages, so the total com-
putation required is O(N log2N) [10].
Due to the fact that, in practice, FFTs often process

streams of data, a pipelined architecture has been chosen.
The N-point FFT design is based on the radix-4 algorithm.
To generate different designs, we identify the parameters
that determine the FFT architecture and eventually affect
the energy dissipation. There are three design parameters
that characterize an N-point FFT designs: 1) the problem
size (N), 2) the degree of horizontal parallelism (Hp), and
3) the degree of vertical parallelism (Vp). The horizontal
parallelism determines how many radix-4 stages are used in
parallel (1 ≤ Hp ≤ log4 N). Vertical parallelism determines



the number of inputs operated on in parallel. Using the
radix-4 algorithm, it is possible to operate on up to 4 inputs
in parallel. We have considered five basic modules in the ar-
chitecture: radix-4 butterfly, data buffer, data path permu-
tation, parallel-to-serial/serial-to-parallel mux, and twiddle
factor computation modules. Each individual module is pa-
rameterized and, hence, scalable so that a complete design
can be obtained from combinations of the basic modules
(See Figure 4).

(c)(b)(a) (d)

RAM

RAM X

(e)

R4

Figure 4: (a) Data buffer (Dbuf), (b) Twiddle factor
computation (Twiddle), (c) Data path permutation,
(d) parallel-to-serial/serial-to-parallel mux, and (e)
Radix-4 computation (R4)

Radix-4 butterfly: This module performs a set of addi-
tions and subtractions with 16 adders/subtracters. It takes
four inputs and produces four outputs in parallel. Each in-
put data has real and imaginary values. The complex num-
ber multiplication for imaginary value j is removed since
it is implemented by remapping the data path and using
adders/subtracters.
Twiddle factor computation: This module performs

the complex number multiplication of the data with twiddle
factors. The twiddle factors are obtained from a sine/cosine
lookup table. Bypassing the multiplication when the value
of twiddle factors is 1, −1, j, or −j can reduce computation
and thus energy (by disabling the multipliers). This module
contains 4 multipliers, 2 adders/subtracters and two sign
inverters.
Data buffer: This module consists of two RAMs having

N/Vp entries each. Data is written into one and read from
the other RAM simultaneously. The read and write opera-
tions are switched after every N inputs. The data write and
read addresses are at different strides determined by the
architecture. For example in an N=16, single input case,
writing is done sequentially and reading is at strides of four.
Data path permutation: In the parallel architecture

(Vp = 4), data dependencies occur in accessing data in
parallel from data buffers. This is due to stride accesses
requiring data from either the same locations or the same
RAMs. Thus before storing and after reading data in the
data buffers of each stage, the data paths need to be per-
muted in a cyclic manner so that data can be accessed in
parallel and in the correct order by the next stage. As an
example, for N = 16, there are 16 data (a[0], ..., a[15]) and
4 data are fed to four data buffers each cycle (See Figure
5 (b)). At the first cycle, a[0], a[1], a[2], a[3] are fed to the
data buffer in parallel without permutation. At the sec-
ond cycle, a[4], a[5], a[6], a[7] are fed with one permutation
so that the data are stored such as a[7], a[4], a[5], a[6]. Note
that a[4] is stored in the second buffer not the first one.
By doing these operations up to 4 cycles, the first buffer
has a[0], a[7], a[10], a[13], the second buffer a[1], a[4], a[11], a[14],
and so on. For the first radix-4 module, a[0], a[4], a[8], a[12]

are read from each data buffer in parallel without any delay.

Parallel-to-serial/serial-to-parallel mux: This mod-
ule is used when the data is fed into the Radix-4 module
in parallel and fed out in serial for the serial or partially
parallel architectures (Vp < 4). While the radix-4 module
operates on four data in parallel, the rest of architecture is
flexible. Thus, to match the data rate, a parallel-to-serial
mux before the radix-4 module and a serial-to-parallel mux
after the radix-4 module are required.
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Figure 5: Architectures for 16-point FFT (a) Hp = 1,
Vp = 1, and (b) Hp = 2, Vp = 4

For example, a 16-point FFT algorithm has 2 radix-4
stages. In the design, we can use one or two radix-4 mod-
ules (Hp = 1, 2) depending on the sharing of the radix-4
module resource. If Hp = 1, one radix-4 module is used and
is shared by the first and second stages. Thus a feedback
datapath is necessary which decreases the throughput of the
design (See Figure 5 (a)). Figure 5 (b) shows a fully parallel
architecture for N = 16 when Vp = 4, Hp = 2. This de-
sign has 12 data buffers, two radix-4 modules, and 3 twiddle
computation modules.
In the FFT designs, energy efficiency is achieved using

parallel processing and pipelining along with module dis-
abling. Pipelining and parallel processing increase the through-
put and decrease the effective latency. Module disabling is
used with the twiddle factor computation modules to reduce
the required amount of energy by 50%. Other techniques
used are 1) selecting a radix-4 algorithm as the basic mod-
ule to reduce the number of complex multiplications in the
design and 2) choosing bindings such that the data buffers
and sine/cosine lookup tables are implemented using SRAM
for N < 64 or BRAM for N ≥ 64.

3.2 Matrix Multiplication
The matrix multiplication algorithm takes two n × n in-

put matrices, A and B, and computes the product C =
A × B. An architecture for this kernel application is pro-
posed in [8]. That architecture is optimized for low latency.
When the matrix multiplication is performed on streams of
data, throughput becomes the important performance met-
ric. Our architecture, presented here, is throughput-oriented
and utilizes parallelism and pipelining extensively. This ar-
chitecture also includes logic for outputting the product ma-
trix C while [8] lacks such logic. The output of one product
matrix is overlapped with the computation of the next so no
wait cycles are caused by the output. Thus, a throughput
of one sample of data per clock cycle is achieved.
Figure 6 shows the architecture and the algorithm. A lin-

ear array architecture is employed. On-chip memory is used.
That is, all matrices are stored in the on-chip memory of the
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Figure 6: (a) Linear array architecture, (b) process-
ing element, (c) algorithm for matrix multiplication

device (e.g. BRAM in the Virtex-II). The algorithm com-
putes the product efficiently, both in terms of latency and
energy, by cleverly moving the entries of the input matrices
through the linear array. The entries from matrix A are fed
into the linear array in column major order from the on-
chip memory, while the entries from matrix B are fed into
the linear array in row major order. Further, the entries
from matrix A do not begin to enter the linear array until
n cycles after the entries from matrix B. The PEs compute
the sums of products that are the entries for matrix C. As
an example, the algorithm is given in Figure 6 (c) for the
case in which the number of PEs is equal to n.
In the algorithm, A, BU, BM, and BL are storage registers

in a given PE; aik is the entry in the i-th row and k-th
column of matrix A; and bkj is the entry in the k-th row
and the j-th column of matrix B. The output of PEj is
stored in PEj−1. Starting from the (n2 + 1)th cycle, n2

results c′ij are generated from each PE during the next 2n−1
cycles. Output memory (CObuf) is necessary in each PE
otherwise the final c′ij from one matrix multiplication would
be overwritten by the intermediate c′ij of the next matrix.
PEj−1 stores the output from PEj via port Cin in CObuf.
For n cycles, the final c′ij at PEj (for example, c12 at cycle

11) is output to PEj−1. For the next n2 − n cycles, the
stored c′ij of PEj in CObuf is outputted to PEj−1. The
outputs from PE1 are stored in on-chip memory as a final
results. The execution time becomes n2 since there is one
output result every clock cycle.
This linear array based design ensures that connections

are only made between neighboring PEs and further ensures
that only short interconnect resources are used. In a Virtex-
II implementation of this design, most of the interconnect

resources used are direct or double wires. All data from
matrices A and B is fed in a pipelined fashion from left to
right. All outputs flow from the right to the left. Each PE
is always active which maximizes the throughput. Energy-
efficient bindings are chosen for the multiplier, CBuf, and
CObuf. If the number of entries is larger than 3, SRAM is
used for energy efficiency. Block multipliers are used be-
cause they are energy-efficient, especially when both inputs
are not constants. One more technique used in this design is
block matrix multiplication. When n < 24, the fully paral-
lel architecture that uses n PEs is a good candidate. When
n > 24, block matrix multiplication with blocks of size (n/p)
is used, where p is the number of PEs. This technique de-
creases throughput but saves area and energy.
It can be shown that this algorithm computes the prod-

uct of two n × n matrices in (n/p)3(2p2) cycles. However,
pipelining can reduce the effective latency by a factor of 2.

4. HIGH-LEVEL PERFORMANCE AND EF-
FICIENCY COMPARISON

High-level estimation is a quick way for a designer to es-
timate performance of an application. Rather than imple-
mentation and simulation, the designer employs equations
to provide reasonably accurate results that can be used to
make decisions early in the design process (See Section 5 for
a discussion of accuracy).
To compare FPGAs, DSPs, and embedded processors, we

have picked a representative of each type of device and an-
alyzed its performance in executing FFT and matrix mul-
tiplication. Our device selection is outlined below, followed
by a description of our method for comparing these devices
and the results of the comparisons.

4.1 Device Selection
The Virtex-II is a high-performance, platform FPGA from

Xilinx [17]. We have chosen the XC2V1500/3000 devices for
comparison. These FPGAs have 48 and 96 18×18-bit block
multipliers, respectively, and run at a clock frequency of
100 MHz. The DSP that has been chosen for comparison is
the Texas Instruments TMS320C6415. It has been chosen
because it is Texas Instruments’ highest performance fixed
point DSP [16]. This device can perform four 16 × 16-bit
or eight 8 × 8-bit multiplications per clock cycle. For an
example embedded processor, we choose the IBM PowerPC
405 core embedded in the Xilinx Virtex-II Pro. This proces-
sor is a good example of the type of processor that can be
found in a heterogenous, system-on-chip-type architecture.
For signal processing tasks, the PowerPC core can perform
one integer multiply and accumulate (MAC) operation per
clock cycle.

4.2 Latency and Energy Estimation
Our first task is to estimate the latency required by each

device in executing each of the kernel applications. Once
we have this data, we can use it and information about the
power dissipation of each device to calculate the energy dis-
sipated in executing each kernel application. Each type of
device requires a different method for performing the afore-
mentioned two tasks.

4.2.1 FPGA
To estimate energy of FPGA based design at high level,

we utilize the modeling technique proposed in [3]. Energy



models specific to the designs are constructed at the module
level by assuming that each module of a given type (regis-
ter, multiplier, SRAM, BRAM, or I/O port) dissipates the
same power independent of its location on the device. The
high-level energy model has power functions associated with
each module. To find each module’s power function, each
module was modeled in VHDL. Then, it was synthesized
using Xilinx XST. After synthesis, the design was placed
and routed. The output from the place and route tool was
simulated using ModelSim 5.5e. The input stimuli for this
simulation had an average switching activity of 50%. The
output from the simulation and the output from the place
and route tool were used as input to Xilinx XPower. XPower
was used to estimate the power dissipation for each module.
Curve fitting based on sample low-level simulations is used
to determine the function. This function captures the effect
on power dissipation of the variation of design parameters
associated with the module such as precision, size, and fre-
quency. Additional details of the model can be found in
[3].
FFT: Based on the architecture and algorithm in Sec-

tion 3.1, it can be shown that the equation to calculate the
effective latency, of computing an N-point, radix-4 FFT is

L =
N log4 N

Vp ×Hp
(1)

where L is in cycles. Here and throughout the paper, we
convert the latency in cycles to latency in seconds by di-
viding the latency in cycles by the clock frequency. We
also know the types of FPGA components (multipliers, reg-
isters, etc.) and the amounts of each type of component
that are used by the five modules. We obtain the power
function for each of the modules using the techniques in [3].
We sum the average power dissipation of each module to
estimate the total power dissipation. Energy dissipation is
equal to the product of total power and latency. To esti-
mate the energy dissipation, then, we simply multiply the
total power dissipation by the estimated latency. We use
this method throughout the paper. The power functions
for the data buffer, the radix-4 module, the data path per-
mutation, parallel-to-serial/serial-to-parallel mux, and the
twiddle computation modules are PD, PR4, Pmap, Ps2p/p2s

and PTw , respectively, where PD = 1.23N + 35.44 (mW)
using SRAM, PD = 0.0156N + 79.65 (mW) using BRAM,
PR4 = 142.84 (mW), Pmap = 54.09 (mW), Ps2p/p2s = 13.52
(mW), PTw = 0.0054N+183.57 (mW) using BRAM, PTw =
0.4879N +157.74 (mW) using SRAM, and PIO = 44 (mW).
Thus, the energy can be estimated as

E = L · {Vp(Hp + 1)PD + 2mHpPmap + (Hp − 1)PR4

+2s(Hp− 1)Ps2p/p2s + tPTw + 2VpPIO} (2)

where m is the number of data path permutation modules
(m = 1 when Vp = 4, otherwise m = 0) and s is the num-
ber of parallel-to-serial/serial-to-parallel muxes (s = 1 when
Hp = 1, otherwise s = 0). t is the number of twiddle com-
putation modules and is calculated as follows:

t =

8>><
>>:

(Vp − 1)(Hp − 1) when (Hp= log4N, Vp = 4)

Vp(Hp − 1) when (Hp= log4N, Vp < 4)
(Vp − 1)Hp when (Hp< log4N, Vp = 4)

VpHp when (Hp< log4N, Vp < 4)

We apply the parameter values to Equation 2 to com-
pare the energy dissipations of various problem sizes. The
clock speed of FPGA-based designs varies based on the likely
speed achievable after place and route results. Figure 7
shows the distribution of energy dissipations of the modules
for various design points when computing a 256-point FFT.
The precision of each data is 16 bits. We assume a clock fre-
quency of 100MHz since we later achieve that frequency in
synthesized designs. We choose the minimal energy dissipa-
tion by selecting appropriate parameter values (Hp = 4 and
Vp = log4 N). Parallelism increases the energy efficiency
of the FFT design despite increasing the area requirement.
These designs use BRAMs for data buffer and phase lookup
table since BRAMs are more energy-efficient for N > 64
(See Figure 1).
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Figure 7: Energy distribution of modules in FFT ar-
chitecture for various design points (N=256, BRAM
based)

Matrix Multiplication: To calculate the latency and
energy estimates for matrix multiplication, we follow the
same strategy as for FFT. The effective latency, in cycles
to multiply two n × n matrices for various values of n and
different numbers of PEs (p) is

L = (n/p)3p2 (3)

The energy is given by

E = L× (6pPR + pPAcc + pPMult + 2pPBuf + 3PBRAM )
(4)

where L is the latency for multiplying two n×n matrices us-
ing p processing elements, PMult is the power used by a mul-
tiplier, PAcc is the power used by an accumulator, PBRAM

is the power used by an on-chip memory, PR is the power
used by a register, and PBuf is the power used in Cbuf or
CObuf. The values of the power variables are PMult = 15.83
(mW), PBRAM = 11.89 (mW), PR = 2.12(mW), PACC =
5.54 (mW), PBuf = 0.0048p2 + 0.043p + 10.02 (mW). The
constant coefficients in Equation (4) are based on the num-
ber of each type of component used by a PE in the archi-
tecture of Section 3.2.

4.2.2 DSP
Texas Instruments provides optimized benchmark soft-

ware algorithms for its TMS320C6415 DSP, among others
[16]. In addition to providing the algorithms, Texas Instru-
ments also provides equations for calculating the latency, in
terms of number of cycles, for using the software benchmark
algorithms. We utilize these equations in our estimations.



Table 1: Average power dissipation of the
TMS320C6415

Clock Operating Power(W)
frequency(MHz) voltage (V) 50%/50% 75%/25%

600 1.4 1.47 1.61
500 1.2 1.04 1.19

FFT: We use the latency equation associated with the
FFT benchmark to estimate the latency for calculating an
N-point FFT. The equation, which is for a radix-4, decimation-
in-frequency decomposition is given below.

1.25N log4N − 0.5N + 23 log4N − 1 (5)

Texas Instruments classifies two activity models for the
DSP: the high activity model and the low activity model
[16]. High activity represents the time the DSP spends per-
forming compute-intensive, optimized algorithms, such as a
FIR filter. Low activity represents the time spent perform-
ing less compute-intensive tasks, such as setting up registers
or executing less optimized algorithms. Texas Instruments
then presents data for two power activity categories: 75%
high/25% low and 50% high/50% low. The former is for
applications that spend 75% of their time in high activity
and 25% of their time in low activity and the latter is for
applications whose time is split into 50% high activity and
50% low activity. Table 1 shows the average power dissipa-
tion when the DSP is run at clock frequencies of 500 and
600 MHz. Note that these values do not include any exter-
nal memory. We assume that all data can fit in the device’s
cache. We have determined that FFT more closely falls into
the 75% high/25% low category because it is an optimized
algorithm, spending more of its time in high activity.
Matrix Multiplication: Matrix multiplication is also

one of the software benchmark algorithms. For n×n matrix
multiplication, the latency equation is

L =
h
(2n+ 18)

n

4
+ 7

i n
2
+ 5 (6)

We use Equation 6 in our calculation of the latency required
for matrix multiplication.
Matrix multiplication is a highly optimized benchmark,

so its power dissipation likely falls into the 75% high/25%
low activity category.

4.2.3 Embedded Processor
For each kernel application, we find a lower bound on the

latency by considering the number of arithmetical opera-
tions that must be performed. The actual latencies and en-
ergies will likely be much higher than the lower bounds due
to the control and memory instructions in the algorithms.
FFT: It is shown in [4] that the number of operations to

compute an N-point, radix-4, decimation-in-time FFT is�
17

4

�
N log2N − 43

6
N +

32

3
(7)

The power dissipation of the PowerPC core is 0.9 mW/MHz
[17]. At a clock frequency of 300 MHz, then, 270 mW of
power are dissipated.
Matrix Multiplication: In the multiplication of two

n× n matrices using the standard matrix multiplication al-
gorithm, there are n3 MAC operations. To find a lower
bound, we assume that these MAC operations will dominate
the computation time and we ignore other instructions. The

PowerPC executes one MAC per clock cycle, so the lower
bound of the latency is estimated to be

L = n3 (8)

4.3 High-Level Estimation Results
We apply the parameter values to the equations obtained

in Section 4.2 to compare the energy dissipations of the three
devices. The clock speed of FPGA-based designs varies
based on the likely achievable speed after place and route
results. The results presented for the TMS320C6415 are
based on a clock rate of 500 MHz. The results presented
for the PowerPC core on Virtex-II Pro are based on a clock
rate of 300 MHz.

4.3.1 FFT
Figure 8 shows the energy dissipations of each device when

computing an N-point FFT. The precision of each data is
16 bits. For FPGA-based designs, we assume a clock fre-
quency of 100 MHz since we later achieve a 100 MHz design
in low-level simulation. We choose the minimal energy dis-
sipation by selecting different parameter values (Hp = 4 and
Vp = log4N). Despite only estimating a lower bound for the
PowerPC, it is still the highest energy device for the FFT. It
is reasonable to conclude, then, that the embedded proces-
sors are not good options for FFT if low energy is the highest
priority. We see that the FPGA-based designs require the
least amount of energy. For example, the FPGA-based de-
sign at N = 1024 has about 40% better energy performance
compared with the DSP solution.
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Figure 8: Energy vs. problem size for FFT

4.3.2 Matrix Multiplication
Figure 9 shows the energy dissipated by each device when

multiplying two n×nmatrices. For FPGA-based designs, we
assume a clock frequency of 150 MHz since we later achieve
150 MHz in low-level simulation. The precision of each data
is 8 bits. We use a fully parallel architecture when n < 15
and use the block matrix multiplication when n > 24. When
15 ≤ n ≤ 24, the energy estimation values of fully paral-
lel architecture and block based architecture are very close.
Thus we can choose one depending on other constraints such
as area and latency. When n < 15, p = n. That is, the num-
ber of multipliers equals the number of rows (or columns)
in the matrices being multiplied. When n > 24, we choose
the value of p where n/p is the block size and n is divisible
by p. We have chosen here to set the number of processing
elements to 16 because it leads to one of the most optimal
configurations of the Virtex-II in terms of energy dissipation.
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Figure 9: Energy vs. problem size for matrix mul-
tiplication

One note is that we have not studied the low-power modes
of the TMS320C6415 or the PowerPC core.

5. LOW-LEVEL SIMULATION RESULTS
To test the accuracy of the high-level energy estimation in

Section 4, we compared estimates from the functions against
actual values based on synthesized or programmed designs
and low-level simulation. We present low-level simulation
results for FFT and matrix multiplication using the Virtex-
II FPGA running at 100 and 150 MHz, Texas Instruments
TMS320C6415 DSP running at 500 MHz, and PowerPC core
running at 300 MHz. To compare our proposed designs on
the same FPGA, we also synthesized FFT and matrix mul-
tiplication from Xilinx library.
The results for Virtex-II are based on the low-level simula-

tion from VHDL codings of our designs. These designs were
synthesized using XST (Xilinx Synthesis Technology) in Xil-
inx ISE 4.1i. The place-and-route file (.ncd file) was ob-
tained for Virtex-II XC2V1500 (package bg575, speed grade
-5) and XC2V3000 (package bg728, speed grade -5). The
input test vectors for the simulation were randomly gener-
ated and had an average switching activity is 50%. Mentor
Graphics ModelSim 5.5e was used to simulate the designs
and generate simulation results (.vcd file). These two files
were then provided to the Xilinx XPower tool to evaluate
the average power dissipation. Energy dissipation was ob-
tained by multiplying the average power by the latency. We
observed that the estimation error using our functions (see
Table 3) is below 20% for energy dissipation. We have also
adopted a technique based on statistical analysis. We utilize
confidence intervals about the sample mean energy dissipa-
tion for a design. Confidence intervals allow us to address
dependency upon input stimuli because they describe the
likelihood that the true mean over an entire population is
within a certain range of the experimental mean. The equa-
tion x±zα/2(s/

√
M) is employed to estimate the confidence

interval for our simulations where x is the sample mean (the
mean found by experiment), α is a number between 0 and
1, zα/2 is a constant as explained in [7], s is the population
standard deviation, and M is the number of samples. To
statistically analyze energy dissipation for the matrix multi-
plication, we performed 50 different n×n matrix multiplica-
tion trials for our designs. Each trial consists of performing
the low-level simulation procedure, as described above, with
the uniformly distributed, randomly generated matrices as
input. For example, for n=15, we have a mean energy dis-
sipation of 1509.72 nJ with a 95% confidence interval of

±1.85.
Table 3 and Table 5 compare the performance of our de-

signs against the Xilinx design and the DSP solution from
TI [16]. Xilinx provides the various sizes of FFT in Core-
Gen library. We run Xilinx FFT at 100 MHz. Xilinx also
provides an optimized design for 3×3 matrix multiplication
only. The Xilinx matrix multiplication design executes at
150 MHz. For n > 3, we use block matrix multiplication.
The TMS320C6415 results come from using Texas Instru-
ments Code Composer Studio 2.1. For FFT and matrix
multiplication, we ran the DSP fft and DSP mat mult algo-
rithms from the Texas Instruments DSP library [16]. The
latency is based directly on profiling. To compute energy
dissipation, we again assume the 75% high/25% low activ-
ity category, as described above. We have observed that the
estimation error using the high-level estimation (see Table 3)
is below 11% for energy dissipation.

Table 2: Energy distribution for matrix multiplica-
tion

Problem size(n) Logic E (nJ) Interconnect E (nJ)

3 8.99 6.99

6 58.82 47.09

12 421.73 353.24

15 785.55 724.17

These comparisons are based on individual metrics as
well as more comprehensive metrics of energy×area×latency
(EAT ) product [2]. When comparing multiple designs with
the EAT metric, the one with the smallest EAT value is
the best. Table 4 shows the improvement of the proposed
designs compared with those from Xilinx and TI DSP.
Energy efficiency for FFT is achieved using pipelining,

appropriate disabling of the modules and choosing efficient
memory bindings. Pipelining increases the throughput and
decreases the effective latency. Disabling twiddle factor com-
putation modules reduces the amount of energy used by
more than 30%. Also, selecting a radix-4 algorithm as the
basic module reduces the number of complex multiplications
in the design. Choosing bindings such that the data buffers
and sine/cosine lookup tables are implemented using SRAM
for N < 64 or BRAM for N ≥ 64 increases the energy effi-
ciency. We also observed that while parallelism increases the
throughput and eventually the energy efficiency, the energy
used by the interconnect in FPGAs significantly increases.
For example, the design of (Vp,Hp) = (4, 1) dissipates 20%
more energy than the design of (Vp,Hp) = (1, 4) for N = 256
while the former has 2 times higher throughput. The in-
creased energy dissipation is due to the former’s use more
interconnects and memory elements.
Energy efficiency for matrix multiplication is due to reduc-

tion in latency, pipelining, parallelism, and energy-efficient
bindings. Table 2 shows the energy distribution over logic
and interconnect (XPower provides this information, includ-
ing for I/O). While the energy distribution of a typical de-
sign is dominated by the interconnect [13], the logic is dom-
inant in our proposed designs. This is due to the archi-
tecture selection of the linear array. Figure 10 shows the
energy dissipation of matrix multiplication on a linear array
architecture. For problem sizes up to 24, the full parallel
architecture gives good energy performance. However, for
problem sizes greater than 24, block matrix multiplication



Table 3: FFT performance of Xilinx library based design, TI DSP, and our designs
Problem Xilinx (100MHz) TI DSP (500MHz) Our designs (100MHz)

size(n) A T Em EAT T Eest Em E err Vp Hp Binding A T Eest Em E err EAT

16 136 0.16 179.6 0.04 0.17 183.2 199.9 9% 1 2 SRAM 1171 0.16 65.4 77.0 15% 0.014

4 2 SRAM 2390 0.04 63.5 75.2 15% 0.007

64 1079 1.92 1785.6 3.70 0.60 656.8 716.4 9% 1 3 SRAM 2266 0.64 552.4 493.3 12% 0.72

1 3 BRAM 1613 0.64 464.2 390.4 19% 0.40

4 3 SRAM 5690 0.16 393.9 418.7 6% 0.38

4 3 BRAM 4193 0.16 403.2 400.4 1% 0.27

256 1303 7.68 6927.3 69.32 2.53 2958.3 3008.3 2% 1 4 BRAM 2050 2.56 2582.2 2223.1 16% 11.67

4 4 BRAM 5624 0.64 2203.2 1971.3 12% 7.10

1024 1557 30.72 34283.5 1639.82 12.07 14284.7 14365.7 1% 1 5 BRAM 2744 10.24 14963.5 13739.4 9% 386.06

4 5 BRAM 6673 2.56 11424.7 9204.2 20% 157.23

Eest is the estimated energy (nJ). Em is the measured energy(nJ) from the synthesized designs.

The unit of EAT is 1E-9. The unit of Area (A) is slice, The unit of time (T) is usec.

Table 4: FFT performance comparison with Xilinx library based designs and TI DSP
Problem Our designs (100MHz) Our designs vs. Xilinx designs Our designs vs. DSP

size(n) Vp Hp Binding E (decrease) A (increase) T (decrease) EAT (decrease) E (decrease) T (decrease)

16 1 2 SRAM 57% 0.86x 1.0x 2.71x 61% 1.06x

4 2 SRAM 58% 1.75x 4.0x 5.45x 62% 4.25x

64 1 3 SRAM 72% 2.10x 3.0x 5.17x 31% 0.94x

1 3 BRAM 78% 1.49x 3.0x 9.18x 46% 0.94x

4 3 SRAM 77% 5.27x 12.0x 9.70x 42% 3.75x

4 3 BRAM 78% 3.89x 12.0x 13.77x 44% 3.75x

256 1 4 BRAM 68% 1.57x 3.0x 5.94x 68% 0.99x

4 4 BRAM 72% 4.32x 12.0x 9.77x 72% 3.95x

1024 1 5 BRAM 60% 1.76x 3.0x 4.25x 60% 1.18x

4 5 BRAM 73% 4.29x 12.0x 10.43x 73% 4.71x

Table 5: Energy dissipation for matrix multiplication
Problem Xilinx (150MHz) TI DSP (500MHz) Our designs (150MHz)

size(n) A T Em EAT T Eest Em E err A T Eest Em E err EAT

3 299 0.18 23.12 1.24 0.14 149.94 166.6 11% 434 0.06 13.37 15.98 16% 0.42

6 299 1.44 184.98 79.65 0.38 454.58 456.96 1% 861 0.24 98.95 105.91 7% 21.89

12 299 11.52 1479.84 5097.29 1.54 1825.46 1827.84 0% 1699 0.96 755.95 774.97 2% 1264.00

15 299 22.50 2890.32 19444.63 3.22 3834.18 3836.56 0% 2083 1.50 1463.47 1509.72 3% 4717.12

Eest is the estimated energy (nJ). Em is the measured energy(nJ) from the synthesized designs.

The unit of EAT is 1E-12. The unit of Area (A) is slice, The unit of time (T) is usec.

Table 6: Energy dissipation for FFT and matrix multiplication on PowerPC (300MHz)
FFT (300MHz) Matrix Multiplication (300MHz)

Problem size (n) Tl (usec) Tm (usec) El (nJ) Em (nJ) Problem size (n) Tl (usec) Tm (usec) El (nJ) Em (nJ)

16 2.24 59.40 605 16038 3 0.09 34.98 24 9444

64 23.68 353.10 6394 95337 6 0.72 310.29 194 83778

256 183.47 n/a 49536 n/a 12 5.76 2311.35 1555 624065

1024 1206.40 n/a 325728 n/a 15 11.25 4436.64 3038 1197893

Tl is a lower bound of time (T). Tm is the measured time (T). El is a lower bound of energy (E). Em is the measured energy (E).
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Figure 10: Energy dissipation of matrix multiplica-
tion using fully parallel architecture and block ma-
trix multiplication (150Mhz, 8 bits per data)

leads to better energy performance. Since the internal stor-
age required for large problem sizes increases dramatically,
parallel processing has a negative effect on the total energy
dissipation. This result implies that a designer must care-
fully investigate the trade-offs among the algorithm and the
degree of parallelism.
For the PowerPC core on Virtex-II Pro, we coded FFT

and matrix multiplication programs in C. We then compiled
using PowerPC-based gcc compiler and simulated them us-
ing the tools from the Xilinx Virtex-II Pro Developers Kit.
We performed a SWIFT model simulation of the PowerPC.
The SWIFT model simulation permits the execution of ac-
tual PPC405 code. The data to be computed are stored
in the BRAM of the Virtex-II Pro. The results for latency
come directly from the simulation while the energy results
come from assuming power dissipation of 0.9 mW/MHz and
a clock frequency of 300 MHz, as described above. The re-
sults are shown in Table 6 with the lower bounds obtained
from Section 4. The constant factor is relatively high in Pow-
erPC designs due to the fact that very rough estimates that
ignore all types of instructions but arithmetic instructions
are used. Note that as problem size increases and arithmetic
instructions do begin to dominate, the constant factor goes
down, albeit slowly. Additionally, the enegy dissipated on
the BRAM is not included; this would add more energy
dissipation. In the future work, more accurate high-level
estimation technique for PowerPC core is required.

6. FUTURE WORK
There are many areas for future work. For instance, we

can develop a technique to more accurately measure the en-
ergy dissipated by the DSPs and embedded processors. One
area of particular interest is analyzing the influence that
duty cycle can have on the choice of device on. For example,
one device may be more energy-efficient for a given kernel
application, but it may dissipate more energy during idle
time. Choosing the right device in this situation involves
not only the type of analysis presented in this paper, but
also analysis of specific usage scenarios and the availability
of low-power modes in each type of device.
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