
A Model-based Methodology for Application Specific Energy Efficient
Data Path Design using FPGAs

Sumit Mohanty1, Seonil Choi1, Ju-wook Jang2, Viktor K. Prasanna1

1Dept. of Electrical Engg. 2Dept. of Electronic Engg.
Univ. of Southern California Sogang University

Los Angeles, CA, 90089 Seoul, Korea
{smohanty, seonilch, prasanna}@usc.edu jjang@sogang.ac.kr

Abstract

We present a methodology to design energy-efficient data paths using FPGAs. Our methodology
integrates domain specific modeling, coarse-grained performance evaluation, design space explo-
ration, and low level simulation to understand the tradeoffs between energy, latency, and area. The
domain specific modeling technique defines a high-level model by identifying various components
and parameters specific to a domain that affect the system-wide energy dissipation. A domain is a
family of architectures and corresponding algorithms for a given application kernel. The high-level
model also consists of functions for estimating energy, latency, and area that facilitate tradeoff
analysis. Design space exploration (DSE) analyzes the design space defined by the domain and
selects a set of designs. Low-level simulations are used for accurate performance estimation for
the designs selected by the DSE and also for final design selection.

We illustrate our methodology using a family of architectures and algorithms for matrix multi-
plication. The designs identified by our methodology demonstrate tradeoffs among energy, latency,
and area. We compare our designs with a vendor specified matrix multiplication kernel to demon-
strate the effectiveness of our methodology. To illustrate the effectiveness of our methodology, we
used average power density (E/AT), energy/(area × latency), as the metric for comparison. For
various problem sizes, designs obtained using our methodology are on average 25% superior with
respect to the E/AT performance metric, compared with the state-of-the-art designs by Xilinx. We
also discuss the implementation of our methodology using the MILAN framework.

Keywords: energy optimization, embedded system design, reconfigurable computing

1. Introduction

Field Programmable Gate Arrays (FPGAs) are a flexible and attractive alternative to dedicated
signal processing devices such as DSPs and ASICs. The high processing power available in FP-
GAs makes them an attractive fabric for implementing complex and compute intensive applications,
such as the signal processing kernels used in the mobile devices [11]. Mobile devices operate in en-
ergy constrained-environments. Thus, in addition to latency and area, energy is a key performance
metric.

Traditional methods for energy-efficient data path design involve the use of various low-level
design tools to perform optimizations at RTL or gate level. Such techniques are time consuming
and are not effective as the return in terms of improvements in energy efficiency is usually much

Proceedings of the IEEE International Conference on Application-Specific Systems, Architectures, and Processors (ASAP’02)
1063-6862/02 $17.00 © 2002 IEEE

less compared with high-level optimizations. Studies show that optimization of energy dissipation
at the algorithmic level has a much higher impact on the total energy dissipation of a system than
optimizations at RTL or gate level [17]. It is reported that the ratio of impact on energy optimization
is 20 : 2.5 : 1 for algorithmic, register, and circuit level techniques [16]. Moreover, a design using
FPGAs has to achieve a balance among energy, latency, and area performance. To achieve this
balance, a designer has to consider various tradeoffs, such as energy versus latency, energy versus
area, and energy versus I/O.

There are several challenges that a designer faces while designing energy efficient systems using
FPGAs. Flexibility in using FPGAs results in a large design space. It is not feasible to traverse such
a large space using time consuming low-level simulations using tools such as Xilinx XPower [18].
Our experience shows that simulators running on a 700 MHz Pentium III Xeon require an average
of 2-3 hours to estimate energy dissipation of a simple design for 3×3 matrix multiplication. Also,
FPGAs do not exhibit a high-level structure like, for example, a RISC processor. If such a high-level
structure is available, then it can be exploited to define a high-level model that facilitates algorithm
level design, optimization, and analysis. Finally, it is not possible to define a universal high-level
model for FPGAs. The model depends on the design to be mapped on to the device.

In order to address the above issues, we propose a design methodology that exploits domain
specific modeling technique to model a family of architectures and corresponding algorithms to
implement an application. The resulting high-level model can be perceived as a virtual parameter-
ized data path (Figure 1). Various parameters in such a data path are referred to as the design knobs.
For example, operating frequency, memory capacity, bandwidth, and precision are some of the de-
sign knobs. Various settings of these knobs provide tradeoffs among energy, latency, and area and
allow a system designer to choose an appropriate setting based on the performance requirements.
Power functions associated with each component capture the effect of varying the performance
knobs on power dissipation of the component. We consider our approach, based on domain specific
modeling, top-down, as our design process begins with a high-level abstraction of a domain and
applies various algorithm level optimization techniques to optimize the design. Some of the opti-
mization techniques are a) identification of an appropriate setting of the knobs and b) architecture
modification based on the algorithmic characteristics. Eventually, once an energy efficient design
has been identified the resulting virtual data path is implemented using FPGA.

Figure 1. Virtual data path

In this paper, “application” refers to kernel oper-
ations such as window operations, matrix multipli-
cation, FFT, etc. Design space exploration (DSE)
refers to traversing the architecture-algorithm space
(domain) to evaluate the quality of a design in terms of
energy, latency, and area. We use performance to sig-
nify some measure of energy, latency, and area. The
area metric depends on the target FPGA. For the Xil-
inx Virtex it is measured in terms of the number of
slices used. In our methodology, for a given appli-
cation, a family of architectures and algorithms (do-
main) is chosen initially by the designer. Next, a high-
level model is defined. This model captures various
architecture parameters and provides power functions for rapid (coarse) estimation of energy of
the data path for the chosen architecture-algorithm pair. The DSE technique is identified by the
designer based on the domain and the high-level model. The model is designed to be at a level of
abstraction high enough to expose possible algorithm level optimizations (for example, number of

Proceedings of the IEEE International Conference on Application-Specific Systems, Architectures, and Processors (ASAP’02)
1063-6862/02 $17.00 © 2002 IEEE

registers, multipliers, operating frequency, type of multipliers, etc.). Low-level simulations are used
to perform off-line simulation of some sample designs in a given domain to accurately estimate the
power functions. This paper focuses on an application specific design methodology. More details
of the model definition can be found in [3]. We also describe how we have configured the MILAN
framework [1] to implement the proposed methodology.

We compare the designs obtained using our methodology with a vendor specified matrix mul-
tiplication kernel to demonstrate the effectiveness of our methodology. Our designs demonstrate
tradeoffs among energy, latency, and area. For performance comparison, we define average power
density (E/AT) metric. This metric characterizes a domain in terms of average power dissipated per
unit area independent of the problem size. This metric assumes that the designs are area and time
optimized. Based on this assumption, the smaller the value for E/AT the better. Based on the E/AT
metric our designs are on the average 25% superior than the state-of-the-art designs provided by
Xilinx. The E/AT metric is evaluated as energy/(area × latency).

The rest of the paper is organized as follows. The next section discusses related work. Section
3 discusses our design methodology. Section 4 describes the implementation of this methodology
using MILAN. Examples illustrating the methodology and comparison of the resulting designs with
the state-of-the-art design is presented in Section 5. We conclude in Section 6.

2. Related work

Several efforts have addressed modeling FPGAs for performance optimization for various signal
processing kernels [2, 4, 8]. These efforts focus on latency optimization through efficient data path
design. Luk et al. have proposed several techniques to model and optimize time performance of
dynamically reconfigurable systems [11]. However, we are not aware of any work that addresses
energy optimization of FPGA based implementations through high-level modeling.

Several efforts have addressed rapid but low-level power estimation and optimization. Wolff
et al. proposed a technique that uses pre-computed tables to characterize power and latency of
the RTL and Intellectual Property (IP) components [17]. This technique achieves energy efficient
designs through identification of components with the lowest energy dissipation that meet the given
latency requirement. However, it does not exploit the available knobs such as frequency, size of
memory, etc. that can be varied to achieve improved energy performance. Nemani et al. proposed a
technique that provides rapid power estimates based on the functional description of combinational
circuits and their average activity [14]. This effort does not address power optimization. However,
it can be integrated into our methodology as a tool for power estimation. Garcia et al. discuss a
technique to optimize energy through pipeline architectures [6]. They demonstrate that increase in
area does not necessarily result in higher energy dissipation.

Raghunathan et al. have proposed several techniques to estimate power dissipation of different
components in an embedded system [16]. Their technique estimates power dissipation based on
a bottom-up approach. It modifies available low-level measurement techniques to increase the
speed of power measurement. Conversely, we address estimation and optimization through a top-
down approach. Our approach begins at the architecture-algorithm (abstraction) level and performs
algorithmic optimizations to identify an efficient design before implementing the design using low-
level tools.

Xilinx provides a tool set for designing with Virtex-II Pro FPGAs [18]. However, these tools do
not provide a high-level abstraction to explore the design space at the algorithm and architecture
level. Instead, the Xilinx tools concentrate on gate-level or RT level optimizations. Our methodol-

Proceedings of the IEEE International Conference on Application-Specific Systems, Architectures, and Processors (ASAP’02)
1063-6862/02 $17.00 © 2002 IEEE

ogy is a complementary effort. A design resulting from our methodology can be further optimized
using the Xilinx tools.

3. Design methodology

The aim of the design methodology is to design energy-efficient data paths specific to an applica-
tion. To achieve this goal, our methodology presents a set of designs which provide tradeoffs among
energy, latency, and area. The designer explores these designs and identifies an appropriate design
based on some selection criteria and performance metrics. Our design methodology is illustrated in
Figure 2. The level of automation for each step will be discussed in Section 4.

Figure 2. Design methodology

3.1. Domain selection

For each kernel there can be several candidate families of architectures. For example, linear array
of processors, two-dimensional array of processors, and cache based uniprocessor architectures are
some of the widely used families of architectures. Along with each family of architectures there
exists several algorithms that implement each kernel.

Several past efforts have identified various architecture families [5, 10, 15], each having different
characteristics in terms of I/O complexity, memory requirements, area, etc. Based on the perfor-
mance needs and the capabilities and limitations of the target FPGA chip, we identify a suitable
architecture-algorithm family. Identification of an appropriate domain ensures that we begin with
an efficient design most suitable for the performance requirements and there are various architec-
ture parameters that can be varied to achieve tradeoff among energy, latency, and area. This step
is a human-in-the-loop process and exploits the designer’s expertise in algorithms and architecture
for domain identification.

3.2. Domain specific modeling

Domain specific modeling facilitates development of a high-level model for a specific domain.
Detailed knowledge of the domain is exploited to identify the architecture parameters for the analy-
sis of the energy dissipation of the resulting designs in the domain. The high-level model consists of
Relocatable Modules (RModule) and Interconnect as the basic structural components. In addition,
it contains several architecture parameters such as operating frequency (f), precision (w), size of
memory (s), power-states (ps), etc. that are associated with each component and a set of power

Proceedings of the IEEE International Conference on Application-Specific Systems, Architectures, and Processors (ASAP’02)
1063-6862/02 $17.00 © 2002 IEEE

functions, one for each power state of a component. Domain specific details identify the range of
values for each model parameter, thus reducing the design space. For example, the maximum and
minimum problem sizes influence several model parameters if a performance constraint such as
maximum tolerable latency has to be met. Also for various domains there are several parameters
that can not be varied. Therefore, these parameters are excluded during modeling.

Another important aspect of the high-level model is the power functions associated with each
component. A power function characterizes the power behavior of a component (RModule or In-
terconnect). The function captures the effect of variation of model parameters associated with the
component on power dissipation. Curve fitting based on sample low-level simulations are used to
determine the function. The high-level model also captures functions to evaluate area and latency
based on the problem size and possibly other architecture parameters. Finally, the power func-
tions and a set of component power state (CPS) matrices are used to derive the system-wide energy
function. The CPS matrices are derived from the algorithm description. These matrices capture
the power state for all the components in each cycle. Details of domain specific modeling and
techniques to estimate power functions and system-wide energy function can be found in [3].

3.3. Design tradeoff analysis

The high-level model contains several functions such as power functions associated with each
component and performance functions for energy, latency, and area. These functions can be ana-
lyzed to understand the tradeoffs between different performance metrics (energy, latency, and area).
These functions also capture the sensitivity of the performance with respect to various architecture
parameters. For example, if a component has some variable parameters then the power function as-
sociated with the component can be analyzed to identify the power-sensitivity with respect to these
parameters.

3.4. Design space exploration (DSE)

During DSE the domain specific design space is traversed to identify designs based on designer
specified selection criteria. Our methodology does not propose a DSE technique as the technique
depends on the domain. For example, select the design with minimum energy dissipation and
select the design with minimum area × latency are some of the possible selection criteria. As
our domain specific modeling technique constraints the design space to allow only valid designs,
it typically does not result in a very large design space. Further, as functions are associated with
different performance metrics, it is possible to use a brute-force technique that evaluates all possible
designs to identify a set of designs that meet the selection criteria. However, it is also possible for
a designer to exploit the nature of various performance and power functions to implement a more
efficient technique for DSE.

The model parameters and their ranges (as defined by the high-level model) and the functions
evaluating various performance metrics are provided as inputs to the DSE phase. In addition, some
design selection criteria can also be provided. The output from the DSE is a single design or a set
of designs that satisfy the selection criteria.

3.5. Low level simulation

Low-level simulation is applied to the designs selected by the DSE step. The DSE uses various
functions to evaluate the designs. While the estimates are reasonably accurate (as shown in Sec-
tion 5), we use low-level simulation for two different purposes. Our study shows that the error due

Proceedings of the IEEE International Conference on Application-Specific Systems, Architectures, and Processors (ASAP’02)
1063-6862/02 $17.00 © 2002 IEEE

to high-level estimation is typically in the range of ±10%. Therefore, low- level simulation is nec-
essary to select a design if two candidate designs are within 10% of each other for any performance
metric. The other use is to verify the performance estimates evaluated using the functions provided
in the high-level model.

Another application of low-level simulation is to estimate the power functions associated with
the high-level model. Detailed description of the use of low-level simulation for power function
estimation can be found in [3].

4 Implementing the methodology using MILAN

Model-based Integrated SimuLAtioN (MILAN) is a model based extensible framework that fa-
cilitates rapid, multi-granular performance evaluation of a large class of embedded systems, by
seamless integration of different widely used simulators and design tools into a unified environ-
ment [12]. MILAN provides a formal paradigm for specification of the structural and behavioral
aspects of embedded systems and a unified software environment for system design and simulation.
MILAN can be configured for a specific domain to provide a modeling language suitable for that
domain. MILAN is suitable for our design methodology as it can be configured for a specific do-
main and it can seamlessly integrate various simulators and tools. However, the use of MILAN is
not limited only to the proposed methodology. MILAN provides an easy plug-n-play environment.
Simulators and tools (both henceforth referred to as tools) are integrated into MILAN through soft-
ware components known as Model Interpreters (MI). Each tool is associated with its own set of
MIs. MIs translate the information stored in the models into the format required by the tool. For
example, integration of SimpleScalar (a popular cycle accurate simulator targeting MIPS proces-
sors) involves a set of MIs to generate a “config” file for SimpleScalar, to generate “C” code for
the application, and to provide feed-back to the model by sending the performance results obtained
through simulations to the models. More details of the MILAN framework can be found in [1].

We describe how MILAN is configured to implement the design methodology described in Sec-
tion 3. The first step does not involve MILAN. This step exploits the designer’s expertise in algo-
rithm and architecture to identify a suitable domain for the target application. Once a domain has
been identified, MILAN is configured to provide a modeling language suitable for domain specific
modeling. Once configured, MILAN provides a user interface (UI) through GME 2000, a graph-
ical modeling tool. The UI consists of representative graphical blocks for basic modules such as
registers, multipliers, adders, and SRAMs, that are used to model the candidate domain in the sec-
ond step. Each of the architecture parameters are associated with the appropriate range of values
obtained through domain analysis. MILAN uses low-level simulation and information provided in
the high-level model to automatically estimate the power functions [3].

For the third step, MILAN is used to plot various functions for visual inspection by the designer.
The details of the high-level model captured in MILAN are available for design space exploration
(DSE), the fourth step. DSE tools can be integrated into MILAN and the MIs associated with the
tool feed information from the models to the tool. An illustrative DSE using MILAN can be found
in [13]. The second, third, and fourth step are semi-automatic. These steps involve the designer to
provide required inputs such as the details of the high-level model, choice of DSE tool, selection
criteria for the DSE, etc. to the MILAN framework.

The DSE step (Step 5) identifies a set of candidate designs. These designs are stored in the
MILAN design database. The designer then invokes appropriate model interpreters that configure
the low-level simulator based on the candidate designs to perform low-level simulation. We have

Proceedings of the IEEE International Conference on Application-Specific Systems, Architectures, and Processors (ASAP’02)
1063-6862/02 $17.00 © 2002 IEEE

integrated XPower and ModelSim in to MILAN to perform low-level simulation for power and
latency respectively.

5. Case study: Data path design for matrix multiplication

We illustrate our methodology using matrix multiplication (MM), a frequently used kernel oper-
ation in signal and image processing. Also, MM is a fundamental operation that has been widely
studied by the architecture and algorithm communities and a rich family of architectures and algo-
rithms implementing MM is available [9].

5.1. Defining a Domain

Figure 3. Architecture for matrix multiplication, PE organization, and corresponding algorithm

For the sake of illustration, we consider the family of linear array of processing elements (PEs) as
the candidate architecture family. This family of architectures offers several advantages compared
to other architecture families. These architectures have a low I/O-bandwidth requirement and scale
as the problem size grows. An optimal family of algorithms for these architectures is known [15].
Each processor in the linear array has a fixed storage of size s, 1 ≤ s ≤ n. The architecture can
perform n × n matrix multiplication in O(n2) time using ndn/se PEs. The number of PEs (pe)
varies from n to n2. However, as our target device is an FPGA with limited amount of logic and
memory that can be synthesized on it, we consider two related families of architecture-algorithm:

• linear array architecture with total storage n2 for a n × n matrix multiplication when n is
small, and

• a block matrix multiply algorithm for N × N matrices using an linear array implementation
for a sub-matrix of size n × n, where N is a multiple of n.

5.2. A High-level Model for Matrix Multiplication on Linear Array of Processors

The structure of the linear array is shown in Figure 3.a. It consists of two components: processing
elements (PEs) and busses connecting the adjacent PEs. For the purpose of high-level modeling,

Proceedings of the IEEE International Conference on Application-Specific Systems, Architectures, and Processors (ASAP’02)
1063-6862/02 $17.00 © 2002 IEEE

we identified the PE as an RModule and the bus between two adjacent PEs as an Interconnect The
PE (see Figure 3.b) has a MAC of precision w and a memory of size s. The PE has two power states
on and off . During the on state the multiplier is on and thus the PE dissipates more energy than
the off state when the multiplier is off. The power state of the multiplier is controlled by clock
gating. The PE also includes 6 registers and 3 multiplexers of w bits. The key parameters affecting
energy are precision (w), number of PEs (pe), amount of memory within a PE (s), and power states
(ps). We refer to this design as Design 1.

A matrix multiplication algorithm for linear array architectures is proposed in [15]. There are
several constraints imposed by the algorithm which are exploited to identify component specific
parameters and their ranges. Also, to achieve the minimum latency, the minimum number of PEs
needed for a n×n matrix multiplication is n [15]. Therefore, the range of s is given by 1 ≤ s ≤ n.
To achieve the minimal I/O complexity O(n2), the total amount of memory across all PEs should
be n2. Therefore, the total number of PEs (pe) is n dn/se. The latency (T) of this design using
n dn/se PEs and s memory per PE is [15]:

T =
1

f
(n2 + 2n dn/se − dn/se + 1). (1)

We consider problems in the range 1 ≤ n ≤ 16. For the sake of illustration, we fixed w at 8. The
parameters and their ranges are shown in Table 1.

Table 1. Model parameters
Parameters Values or ranges

s 1 ≤ s ≤ n
pe 1 ≤ pe ≤ n dn/se
w 8
ps on, off

We implemented the PE using a Virtex-II FPGA operating at f = 166MHz and performed
simulations to obtain the power functions for the PE and the bus. The power function for the PE
are:

PE.p.ps =

{

7.01s + 31.04 mW, (ps = on)
7.01s + 14.04 mW, (ps = off)

(2)

The bus has a constant amount of power dissipation of 39.74 mW. The area of the design can be
expressed as: A = Amult × pe + Areg8 × (3s + 6) × pe + 50 × n where, Amult is the area for
a multiplier and Areg8 is the area for a 8 bit register. This equation is derived based on the design
of the PE (see Figure 3) and the factor of 50 is added to account for the other components such as
multiplexers present in each PE.

5.3. Tradeoff analysis

Tradeoff analysis involves plotting various functions associated with the high-level model. For
example, Figure 4 shows the effect of variation of number of memory modules (s) on the power
dissipation of a PE and effect of variation of number of PEs (pe) on the system-wide energy for
a specific problem size (16 × 16). Based on these curves, the design that consumes the minimum
energy is the design with pe = s = n, where n is the problem size.

For large size matrix multiplication we use the well known block matrix multiply technique.
The performance in terms of energy, latency, and area for 16 × 16 matrix multiplication is shown

Proceedings of the IEEE International Conference on Application-Specific Systems, Architectures, and Processors (ASAP’02)
1063-6862/02 $17.00 © 2002 IEEE

Figure 4. Various tradeoffs associated with the two families of architectures

in Figure 4.c. For analysis, we have normalized the values for energy, latency, and area in this
graph with respect to the maximum value in each category. Thus, depending on the performance
requirement, the best block size can be chosen. For example, block size of 4 is the most efficient
with respect to energy. However, if we optimize for latency or area, block size 16 and 2 respectively
are the optimal designs within the design space defined by the domain.

5.4. Design space exploration

Table 2. Performance comparison
Design based Design based on Performance

Size on Xilinx library our methodology Improvement
T A E E/AT T A E E/AT E T

n × n cycles slices nJ cycles slices nJ % times
6x6 480 207 414.8 0.007 49 1074 158.9 0.0050 62 10
9x9 1620 207 1400.0 0.007 100 1935 590.6 0.0050 58 16

15x15 7500 207 6481.5 0.007 256 4305 3459.9 0.0052 47 29
33x33 79860 207 69015.0 0.007 21296 429 28485.1 0.0052 59 4
48x48 245760 207 212385.8 0.007 25088 1074 81331.5 0.0050 62 10

For the sake of illustration, we consider “minimum energy dissipation” as our selection criteria
for both the domains. Table 2 shows the energy efficient designs identified for different problem
sizes based on the total energy consumed to perform matrix multiplication. We compare these
designs with the state-of-the-art design for matrix multiplication provided by Xilinx [18].

As our power functions are well-behaved functions with easily determinable minima, we were
able to identify the most energy efficient design through visual inspection of the tradeoff curves. We
compared the performance of our design with a design for a 3×3 matrix multiplication provided by
Xilinx [18]. All the designs were executed at the same clock frequency of 166 MHz. We used block
matrix multiplication to implement larger sized matrix multiplication using the 3 × 3 base design.

Proceedings of the IEEE International Conference on Application-Specific Systems, Architectures, and Processors (ASAP’02)
1063-6862/02 $17.00 © 2002 IEEE

For each problem size, we compared the design provided by Xilinx to the most efficient designs
based on our methodology. Table 2 shows the energy, latency, and area values for these designs for
various problem sizes. The improvement in energy dissipation and latency in our designs compared
with the Xilinx designs are also shown. On the average our designs performed 57% better with
respect to system-wide energy dissipation than the Xilinx design. The latency improvement varies
from 4× to 30×. Also, on the average our designs are 25% superior in terms of average power
density (E/AT). Note that same or similar values for E/AT indicate that a similar design is used for
different problem sizes.

The energy dissipation for various designs discussed in this section are based on high-level es-
timations using the system-wide energy function for the domain. In order to validate our energy
estimation technique, we performed the following experiments. For a particular design, we used
the system-wide energy function to estimate the total energy dissipation. We compared this result
with a complete VHDL simulation of our designs using the Xilinx tools. In the sample simulations,
the input data to the components in estimating the power dissipation was randomly generated and
its switching activity (sa) was found to be 25%. We performed this experiment for various designs
for different problem sizes. Table 3 shows the comparison. Our energy estimations were (on the
average) within 6.4% of the estimations using low-level simulation tools. In the worst case, the
error was 7.4%.

Table 3. Accuracy of our high-level estimation technique
Problem size n 3 6 8 9 12 16

Energy Estimated 21.4 159.9 399.6 590.6 1,576.9 4,357.8
(nJ) Measured 23.1 169.1 430.2 633.0 1,671.5 4,646.4

Error 7.4% 5.4% 7.1% 6.7% 5.7% 6.2%

5.5. Applying our design methodology for energy optimization

Our design methodology facilitates algorithmic optimizations based on the high-level model and
tradeoff analysis. These optimizations are performed as a “human-in-the-loop” process. In the
following, we illustrate a scenario where a designer uses the energy distribution among various
components to improve energy efficiency of the complete design. We consider Design 1 described
in the previous example as the candidate design. As shown earlier, for Design 1, s = n results in
an energy efficient design within the domain. We illustrate how energy efficiency can be improved
further based on the details captured by the high-level model. Figure 5 shows the distribution of
energy dissipation in Design 1 for s = n and n = 3, 12. For Design 1 (Figure 3), 47% and 76% of
the energy is dissipated in registers for problems of size 3×3 and 12×12, respectively. Note that the
bulk of the energy is dissipated in the registers. Also, it is difficult to reduce energy dissipation in
multipliers and I/O ports without increasing latency (hence energy dissipation). We have developed
some techniques at algorithm and architecture level to reduce the number of registers used in matrix
multiplication.

Our techniques reduce the number of registers from 2n2 + 6n to n2 + 4n [7]. For example, two
registers (AS.LR and AS.RR) in Design 1 (Figure 3.b) are replaced by one register by feeding
elements of matrix A n cycles after feeding those of matrix B.

Careful analysis of data movement reveals that only two registers (B.T1 and B.T2) are enough
to store the elements of B. We refer to this new design as Design 2. As shown in Figure 5, in
Design 2, overall energy dissipation is reduced by 16% and 25% for problems of size 3 × 3 and
12 × 12, respectively. Amount of energy dissipation in registers is reduced from 47% and 76% to

Proceedings of the IEEE International Conference on Application-Specific Systems, Architectures, and Processors (ASAP’02)
1063-6862/02 $17.00 © 2002 IEEE

Figure 5. Change in distribution of energy dissipation among modules during optimization

32% and 51%, respectively.
Besides reduction of energy via optimizations at architecture and algorithm level, further reduc-

tion is possible at the implementation level. For example, the registers to store intermediate results
(C[j] in Figure 3) can be replaced by CLB-based SRAMs to reduce the power per unit storage.
However, the minimum number of words for the SRAM in the target FPGA [7] must be 16. We
denote this design as Design 3.

Compared with the original design (Design 1), in Design 3, energy dissipation was reduced by
23% and 62% for problems of size 3 × 3 and 12 × 12, respectively. For these designs, only 24%
and 14% of the total energy is dissipated in the registers.

To compare the energy efficiency with the Xilinx design, Design 3 with problem size 3 × 3 is
chosen for low level synthesis. Low level synthesis was performed using Synopsys FPGA Express
and Xilinx XST (Xilinx Synthesis Technology) in Xilinx ISE 4.1i design environment. The place-
and-route file (.ncd file) was obtained for a target FPGA device, Virtex-II XC2V1500. Mentor
ModelSim 5.5e was used to simulate the design and generate simulation results (.vcd file). These
two files were then provided to the Xilinx XPower tool to estimate energy dissipation. The result is
compared against the highly optimized Xilinx reference design [18] in Table 4. Design 3 is superior
to the Xilinx design by 32%, 64%, and 35% in terms of energy, latency, and average power density.
However, in terms of area, our design is 2.3× of the Xilinx design. Details of the designs, energy
functions, and additional results can be found in [7].

Table 4. Performance comparison between Design 3 and the Xilinx design
Metric Xilinx Design 3 Ratio

Energy (nJ) 25 17 68%
Latency (cycles) 45 16 35%

Area (slices) 180 415 2.3x
E/AT 0.67 0.43 64%

6. Conclusion

In this paper, we proposed a model-based design methodology for designing energy efficient data
paths using FPGAs for a specific application. This methodology integrated domain specific high-
level modeling, design space exploration, high-level energy estimation, and low-level simulations.
Matrix multiplication was chosen as a candidate application to illustrate the design of an energy
efficient data path. We considered two domains that implement matrix multiplication. We also
demonstrated algorithm-level optimization techniques to improve the energy efficiency of one of
the designs implementing matrix multiplication.

Proceedings of the IEEE International Conference on Application-Specific Systems, Architectures, and Processors (ASAP’02)
1063-6862/02 $17.00 © 2002 IEEE

For both the domains, we demonstrated the tradeoffs among energy, latency, and area for var-
ious sizes of matrix multiplication. The designs based on our methodology demonstrated (on the
average) an improvement of 57% in energy dissipation and 14x in latency when compared with the
state-of-the-art designs for matrix multiplication provided by Xilinx. High-level modeling based on
a family of architectures and corresponding algorithms (domain) results in fairly accurate estimate
of the system-wide energy dissipation. Our energy estimates were within 7.4% of the estimates
using low-level simulations.

Acknowledgment
This work is supported by the US DARPA Power Aware Computing/Communication Program un-
der contract F33615-C-00-1633 monitored by Wright Patterson Air Force Base and in part by the
National Science Foundation under award No. 99000613. In addition, Ju-wook Jang’s work is
supported by the Ministry of Information and Communication, Korea. We thank Amol Bakshi for
his inputs regarding design space exploration.

References

[1] A. Agrawal, A. Bakshi, J. Davis, B. Eames, A. Ledeczi, S. Mohanty, V. Mathur, S. Neema, G. Nordstrom, V.
Prasanna, C. Raghavendra, M. Singh, “MILAN: A Model Based Integrated Simulation for Design of Embedded
Systems,” Language Compilers and Tools for Embedded Systems, 2001.

[2] K. Bondalapati and V. K. Prasanna, “Loop Pipelining and Optimization for Reconfigurable Architectures,” Recon-
figurable Architectures Workshop (RAW), May 2000.

[3] S. Choi, S. Mohanty, J. Jang, and V. K. Prasanna, “Domain-Specific Modeling for Rapid System-Level Energy
Estimation of Reconfigurable Architectures,” Intl. Conference on Engineering of Reconfigurable Systems and Al-
gorithms, 2002.

[4] A. Dandalis and V. K. Prasanna, “Signal Processing using Reconfigurable System-on-Chip Platforms,” Interna-
tional Conference on Engineering of Reconfigurable Systems and Algorithms, June 2001.

[5] J. A. B. Fortes, K. S. Fu, and B. Wah, “Systematic Approaches to the Design of Algorithmically Specified Systolic
Arrays,” International Conference on Acoustics, Signal and Speech Processing, 1985.

[6] A. Garcia, W. Burleson, and J.L. Danger, “Power Modeling in FPGAs,” 9th International Conference on Field
Programmable Logic and Applications, 1999.

[7] J. Jang, S. Choi, and V. K. Prasanna, “Energy-Efficient Matrix Multiplication on FPGAs,” Manuscript, Dept. of
Electrical Engg., University of Southern California, April, 2002.

[8] D. Kumar and K. Parhi, “Performance Trade-off of DCT Architectures in Xilinx FPGAs,” The 33rd Asilomar
Conference on Signals, Systems, and Computers, 1999.

[9] V. Kumar, A. Grama, A. Gupta, and G. Karypis, “Introduction to Parallel Computing: Design and Analysis of
Algorithms,” Benjamin Cummings, November, 1993.

[10] S. Lei and K. Yao, “Efficient Systolic Array Implementations of Digital Filtering,” IEEE International Symposium
on Circuits and Systems, 1989.

[11] W. Luk, N. Shirazi, and P.Y.K. Cheung, “Modeling and Optimizing Run-time Reconfigurable Systems,” IEEE
Symposium on FPGAs for Custom Computing Machines, 1996.

[12] Model-based Integrated Simulation, http://milan.usc.edu/.
[13] S. Mohanty, V. K. Prasanna, S. Neema, and J. Davis, “Rapid Design Space Exploration of Heterogeneous Embed-

ded Systems using Symbolic Search and Multi-Granular Simulation,” Language Compilers and Tools for Embed-
ded Systems, 2002.

[14] M. Nemani and F. N. Najm, “High-level Area and Power Estimation for VLSI Circuits,” IEEE/ACM International
Conference on Computer-Aided Design, 1997.

[15] V. K. Prasanna Kumar and Y. Tsai, “On Synthesizing Optimal Family of Linear Systolic Arrays for Matrix Multi-
plication,” IEEE Transactions on Computers, Vol. 40, No. 6, 1991.

[16] A. Raghunathan, N. K. Jha, and S. Dey, “High-level Power Analysis and Optimization,” Kluwer Academic Pub-
lishers, 1998

[17] F. G. Wolff, M. J. Knieser, D. J. Weyer, C. A. Papachristou, “High-level Low Power FPGA Design Methodology,”
National Aerospace and Electronics Conference, 2000.

[18] Xilinx Application Note: Virtex-II/Virtex-II Pro Series and Xilinx ISE 4.1 Design Environment,
http://www.xilinx.com.

Proceedings of the IEEE International Conference on Application-Specific Systems, Architectures, and Processors (ASAP’02)
1063-6862/02 $17.00 © 2002 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

