
Abstract – Chord[6] is an efficient P2P search scheme which

uses O(log N) messages per query while Gnutella needs O(N)

messages. However, the query hit ratio greatly suffers when

the Chord is applied to a mobile Ad hoc network (MANET).

In our simulation using NS-2, the hit ratio is as low as 30%

under such a mild mobility as walking(2 m/sec). We propose

two schemes, Backtracking Chord and Redundant Chord, to

improve the query hit ratio over MANET under harsh mobile

environment. In Backtracking Chord, query is sent to the

preceding finger whenever the query to the current finger

timed out due to its absence. The finger is a node which holds

the pointer (or pointer to the pointer) to the item to be

searched[6]. In Backtracking Chord, query hit ratio and the

search time increases as the number of

backtracking(0<t<logN) increases. Our simulation shows the

algorithm achieves up to 88% hit ratio with the mobility of 2

m/sec when t>4. In Redundant Chord, r copies of the query
are sent to r adjacent fingers simultaneously. Query hit ratio

and the bandwidth usage increases as the number of

copies((0<r<logN) increases. Simulation under the same

mobility shows hit ratio as high as 82% with r=6. We also

analyze the relationship between the hit ratio, the search

latency and the number of query messages(or the bandwidth

usage).

1. Introduction

P2P(Peer-to-Peer) file sharing network which is started

with Napster[1] are going on actively with wired internet

recently. However, the search in P2P mobile environment

has not been developed yet. In general, existing P2P search

algorithms in MANET(Mobile Ad-hoc Network) are

flooding-based searches, such as Gnutella[2]. However, the

flooding-based search algorithm produces too much traffic.

For example, in Gnutella, the overhead traffic for

maintaining network connectivity occupies more than 50%

of the total traffic[3]. Since MANET offers extremely

limited bandwidth and also MANET topology changes

more dynamically than wired internet environment due to

its mobility, the flooding-based search algorithm is not

suitable for Mobile Ad-hoc Network[4]. Chord[5], which is

one of the well-known decentralized P2P search algorithms,

improves the scalability by avoiding the requirement that

every node knows about each other node. In an N-node

network, each node maintains information only about

)(log NO other nodes, and a lookup requires)(log NO

messages[6]. Accordingly, Chord not only saves a great

deal of bandwidth, but also decreases search latency than

flooding-based algorithms. However, the Chord cannot

offer relatively high performance under mobile

environment. In this paper, in order to achieve high hit

ratio, low search latency and bearable network traffic for

MANET, two kinds of modified Chord algorithms,

Backtracking Chord and Redundant Chord, are proposed.

The organization of the paper is as follows. An overview

of Chord and its problem in MANET is introduced in

Section 2, and proposed algorithms are mentioned in

Section 3. In Section 4, simulation and experimental results

are discussed, and Section 5 is summarized with

conclusion and future work.

2. Overview of Chord algorithm

2.1 Chord

A Peer-to-Peer Search Scheme over Mobile Ad hoc Networks
Sei-yon Lee°, Lan Quan, Kyung-Geun Lee, Tae-kyoung Cho*, Ju-wook Jang°

Sogang University°, Sejong University, SK Telecom*

One of the decentralized P2P algorithms, Chord is

different from flooding-based search algorithm such as

Gnutella[7]. In an N-node Chord system, the wanted data

can be retrieved by only sending)(log NO query

messages to)(logNO nodes. These)(log NO nodes are

called successor nodes. Each data is given a key and the

node ID which is derived from hash function. Then each

data can be searched by a pair data and key item. For

example, in Fig. 1, in order to search data, K19, the query

message is sent to successor node, N20, whose identifier is

close to K19.

N32

N10

N5

N20
N110

N99

N80

N60

Lookup(K19)

K19

Fig. 1. Chord algorithm

As shown in Table 1, Chord needs less memory space

than Napster and less query messages than Gnutella.

Table 1. Memory space and query message of P2P algorithm

P2P algorithm Memory space Query message

Napster)(NO)1(O

Gnutella)1(O)(NO

Chord)(log NO)(log NO

2.2 The problem of Chord in MANET

We implement simulation with NS2(Network Simulator

2)[8] for existing Gnutella and Chord in MANET. In Fig. 2,

the search latency of Chord decreases 74% than Gnutella

on average. In terms of the search latency, the result

indicates that Chord is more adaptable for MANET than

Gnutella[9,10]. However, as shown in Fig. 3, the hit ratio

of Chord with mobility is 32% while it is 84% with no

mobility on average.

Search Latency in Mobile Ad hoc network

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Node Number

Search Latency(sec.)

Gnutella

Chord
Gnutella average 0.74

Chord average 0.19

Fig. 2. Search latency of Gnutella and Chord in MANET

Hit ratio of Chord is decreasing over Mobile Ad-hoc Network

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Node Number

Hit Ratio
Mobility No-Mobility

Mobility: average 0.32

No Mobility: average 0.84

Fig. 3. Hit ratio of Chord in mobility and no mobility environment

The reason for the low hit ratio of Chord in MANET is

shown in Fig. 4. The mobile node in MANET, sometimes,

leaves the radio region because of its mobility. When the

node, N32, sends query to the disappeared successor node,

N99, the node, N32, can not continue to search the data.

N32

N10

N5

N20
N110

N99

N80

N60

Lookup(K19)

K19

Node suddenly
disappears

Fig. 4. Chord algorithm in MANET

Therefore, the Chord could not be employed in MANET

environment as it is. In this paper, Backtracking Chord and

Redundant Chord algorithms are proposed to maintain

successor table in case successor node disappears abruptly,.

3. Proposed Algorithms

3.1 Backtracking Chord algorithm

Since the search fails by the disappearance of the

requested successor node, in proposed Backtracking Chord

algorithm, we set time-out to every query search. If time-

out occurs, the query is sent to a new successor node

instead of stopping the search. The new designated

successor node is the node just in front of the disappeared

node in the successor table. The table in the right bottom of

the Fig. 6 is successor table which contains the successor

node lists in it. The number of time-out is set to t and the

value of t is between 0 and Nlog . According to the value

t, the number of retransmissions is determined. When a

time-out occurs, the query is sent to the next stage

successor node. Fig. 5 is the flowchart of Backtracking

Chord. If a node joins the mobile network under

Backtracking Chord algorithm, node ID is assigned and a

successor table is made. Then the node can request data as

shown in the flowchart.

Receive Query Response
Msg. during Time-out?

Receive Node
ID

Make Success table

Make Chord
Search ring

Success!

Yes

No

Send Query Msg. to
successor in Nth stage N add one.

(N=N+1)

Send Query Msg. to
successor in Nth Stage

N > t
Yes

No

N = 1

Send Query Msg. to
successor in Nth

Stage.

Receive Query Response
Msg. during Time-out?

No

Yes
Receive Query Response

Msg. during Time-out?

Yes

Fail!

Choose Nth stage

Fig. 5. Flowchart of Backtracking Chord

In Fig. 6, t is set to four, if the search fails(time-out) by

the disappearance of the first stage successor node, N99,

the query is sent to the second stage successor node, N80,

which is just in front of the node, N99, in the successor

table. However, if the time-out occurs until t equal to four,

then the query is resent to the first stage successor node,

N99, again. If the search fails in this time too, then the

Backtracking Chord algorithm stops the search.

N32

N10

N5
N110

N99

N80

N60

Lookup(K19)

K19

2.

N100

1.

N8

1st Timeout
N40

2nd Timeout 3rd Timeout 발생
N603

N404

N802

N991

SuccessorSt.

N603

N404

N802

N991

SuccessorSt.

Fig. 6. Backtracking Chord algorithm in MANET

The Backtracking Chord algorithm can increase hit ratio

t times in maximum by retransmitting the query according

to the value t. However, the search latency increases t

multiples of time-out than primitive Chord in maximum.

Since no more than)log(NtO query messages are produced

for search, the Backtracking Chord can save bandwidth

significantly.

3.2 Redundant Chord algorithm

In Redundant Chord algorithm, the requester node sends

r number of queries to r number of successor nodes

simultaneously, while Backtracking Chord algorithm sends

queries in order. The value r is the number of queries sent

at once, and the range of r is between 0 and Nlog . In

Redundant Chord algorithm)log(NrO query messages are

generated and the search latency is reduced considerably

by sending queries concurrently. The flowchart of

Redundant Chord is shown in Fig. 7.

Fig. 7. Flowchart of Redundant Chord

The Redundant algorithm adopts the fastest reply from

one of the successor nodes by relaying search via

redundant tables of successor nodes. In Fig. 8, when the

node, N32, sends queries to four successor nodes, although

node, N110, disappears, the node, N32, can get information

through N99. Therefore, the probability of obtaining the

data is r times higher than the existing Chord algorithm

with maintaining the search latency similar to Chord. If all

the requested successor nodes disappear, the search can not

be continued any more and the requester receives timeout

message. However, with the increment of the mobile nodes

N, it is nearly impossible that all the successor nodes

disappear concurrently. In a large scale network rather than

a small scale network, the algorithm can guarantee a fairly

acceptable hit ratio within an appropriate search time. The

hit ratio of the Redundant Chord has similar effect to

flooding based Gnutella when r increases. However, in

Redundant Chord, the maximum r is Nlog . Accordingly

the Redundant Chord achieves flooding-based like hit ratio

via only)log(NrO query messages.

N32

N10

N5
N110

N99

N80

N60

Lookup(K19)

K19

1.

2.

N8

N403.

4.

Multiple Query Messages.

Fig. 8. Redundant Chord algorithm in MANET

4. Simulation and experimental results

4.1 Simulation environment

In this simulation, performance results are acquired by

NS2 simulator and one thousand mobile devices are

employed(Fig. 9). These mobile nodes move in a radio

range according to the random waypoint mobility model in

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Node number

Hit Ratio
Chord

Backtracking Chord

Backtracking Chord average 0.74

Chord average 0.32

Glomosim[11]. We select AODV(Ad-hoc On Demand

Distance Vector)[12] as Ad-hoc routing protocol, in the

simulation. The time-out of Backtracking Chord is given

0.01 second and the Redundant Chord is given 1 second.

The radio range of a mobile node is 1m and the area of the

simulation environment is 1000 meter wide and 1000

meter length. The number of mobile nodes is one thousand

and the mobile nodes move at a speed of 1m/sec. The

query messages are generated by random number generator

which generates a number from 1 to 20 for every node.

However, twenty mobile nodes among one thousand nodes

are applied the numbers from 15 to 40 separately. At first,

all nodes are in the radio range and then they are set to on

and off state according to the movement property of the

selected mobility model. If the node is in the radio range, it

is set to on state, otherwise it is set to off state.

Radio Range

Mobile
Node

Chord Search
Ring

Fig. 9. Simulation model

We compare the hit ratio and the search latency of the

proposed algorithms with Gnutella and existing Chord. The

hit ratio H is given by

q

r
M
MH = (1)

Where Mr is the number of response messages and Mq is

the number of query messages in individual mobile node.

The search latency Ts is given by

qrs TTT −= (2)

where Tr is the query message timestamp and Tq is the

query message timestamp.

4.2 Simulation results

In Fig. 10, hit ratio of Chord and Backtracking Chord in

MANET is compared. There are seventeen nodes which

request data more frequently than the others are selected

among one thousand mobile nodes. The hit ratio of

Backtracking Chord presents 72% on average, while hit

ratio of existing Chord presents 32%. In this case, t is set to

two. The hit ratio of node 8 in Backtracking Chord is

especially low. Because in node 8, the probability that the

two requested successor nodes disappear is higher than the

other nodes. The problem can be solved with increasing the

value t as in Fig. 13.

In Fig. 10 the hit ratio of the Backtracking Chord

distributes in wide range, because queries are generated

randomly. Therefore some successor nodes suffer from

processing overhead and can not handle the query

immediately. In this paper, we assumed the processing

overhead may be ignorable. It will be solved in next paper.

Therefore, Backtracking Chord is quite an efficient search

algorithm.

Fig. 10. Hit ratio of Chord and Backtracking Chord in MANET

In Fig. 11, the search latency of Gnutella and Redundant

Chord is compared. Sixteen nodes which request the

queries more frequently than the others are selected. As in

Fig. 11, the search latency of the Gnutella is 0.74 second

and the Redundant Chord is 0.39 second on average. The

search latency in Redundant Chord is reduced by half of

the Gnutella. Since query messages are sent to several

successor nodes concurrently in Redundant Chord, the

search latency is lower than Gnutella which floods the

queries to all of the nodes gradually. The node 10 of

Redundant Chord presents high search latency because in

this case all of the successor nodes disappears

coincidentally, and one of them appears before time-

out(1sec) occurs.

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Node Number

Search Latency(sec.)

Gnutella

Redundant Chord

Gnutella average 0.74

Redundant Chord average 0.39

Fig. 11. Search latency of Gnutella and Redundant Chord in MANET

In Fig. 12, the hit ratio of Chord and Redundant Chord is

compared in MANET. As shown in Fig. 12, the hit ratio of

the Redundant Chord is 53% and it is higher than Chord.

Since the value r is two, the probability that these two

requested successor nodes disappear is relatively high. As

shown in Fig. 14, if the value r increases, the hit ratio

improves accordingly.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Node Number

Hit Ratio Chord

Redundant Chord

Redundant Chord average 0.53

Chord average 0.32

Fig. 12. Hit ratio of Chord and Redundant Chord in MANET

Fig. 13 and Fig. 14 are the correlation among the

quantity of query messages, search latency and hit ratio in

Backtracking Chord and Redundant Chord respectively.

As we know, with the increment of the value t in

Backtracking Chord and of the value r in Redundant Chord,

the quantity of messages increases linearly. The simulation

result shows that, the hit ratio of both Backtracking Chord

and Redundant Chord is increasing according to increment

of the value t and r respectively. However, the search

latency is different. In Backtracking Chord, it presents

linear increment. On the other hand, it decreases in

Redundant Chord according to the increment of value t and

r separately. The reason is as follows. In Backtracking

Chord, the query messages are sent to each successor

nodes one by one. For each query, it spends O(logN) search

time. Therefore, in Backtracking Chord, the search time

increases linearly. However, in Redundant Chord, the

query messages are sent to r number of the successor nodes

simultaneously. It prevents the increment of the search

latency. Moreover, the routing path of the query message in

each successor node is a little different in each successor

node and Redundant Chord adopts the fastest reply from

them. Consequently, with the increment of the value r, the

search latency of the Redundant Chord algorithm decreases.

Fig. 13. Convergence of Backtracking Chord

t

0.88
Search LatencySearch Hit ratio

2 3 4 5 6 71

0.34

0.475

0.61

0.745

0.40

0.545

0.69

0.835

Hit ratio
0.98

Latency

Chord’s Latency

Chord’s Hit ratio

r

0.88

2 3 4 5 6 71

0.34

0.475

0.61

0.745

0.40

0.545

0.69

0.835

0.98

Search LatencySearch Hit ratio

Hit ratio

Latency

Chord’s
Latency

Chord’s Hit
ratio

Fig. 14. Convergence of Redundant Chord

In Fig. 15, according to the increase of the value t,

search latency increases linearly, while hit ratio converges

on 88% in Backtracking Chord. The reason of convergence

is that each mobile node has different size of radio region

in MANET. The overlap of the radio region causes data

collision that could not transfer the query messages

occasionally. Therefore, the hit ratio could not exceed a

certain degree, 88%. In Fig. 15, when the value t equals to

two, it represents wide range of hit ratio distribution. When

the value t equals to seven, it shows high hit ratio

distribution. If the value t increases, the search latency

increases accordingly. Therefore, in a small size MANET,

the Backtracking Chord can configure a reliable P2P search

network.

0

0
.3

3

0
.3

7

0
.4

1

0
.4

5

0
.4

9

0
.5

3

0
.5

7

0
.6

1

0
.6

5

0
.6

9

0
.7

3

0
.7

7

0
.8

1

0
.8

5

0
.8

9

0
.9

3

0
.9

7 0

0.34

0.44

0.54

0.64

0.74

0.84

0

1

2

3

4

5

6

7

8

9

10

Query Msg Sended.
(t* 1Query Msg.)

1 Query Msg.
=

203byte

Search Latency(sec)

Search Hit ratio

t

Fig. 15. Correlation of variables in Backtracking Chord

In Fig. 16, according to the increase of the value r, the

search latency decreases. The reason is that, multiple query

messages are sent to multiple nodes and the search is

implemented through multiple paths concurrently. It

increases the possibility of fast search. However if all the

successor nodes disappear, it produces high search latency,

and wide range distribution of the hit ratio. In a large scale

MANET, a certain hit ratio can be guaranteed and the

search latency decreases according to the increase of the

value r. However, in a small scale MANET, the range of

value r is limited thus the algorithm may not provide

reliable P2P search. Therefore, the Redundant Chord is

appropriate for a large size MANET.

Since the hit ratio of existing Chord algorithm in

MANET is 37.4% on average, the Chord can not serve as it

is. The Backtracking Chord and Redundant Chord

algorithms are proposed in this paper, and simulation

results prove that these two algorithms are reliable and

0
.0

0

0
.0

8

0
.1

2

0
.1

6

0
.2

0

0
.2

4

0
.2

8

0
.3

2

0
.3

6

0
.4

0

0
.4

4

0
.4

8

0
.5

2

0
.5

6

0
.6

0

0
.6

4

0
.6

8

0
.7

2

0
.7

6

0
.8

0

0.00

0.43

0.53

0.63

0.73

0.83

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

Qeury Msg. sended
(r*Query Msg)
1Query Msg

=
203byte

Search Latency(sec)

Search Hit ratio

Fig. 16. Correlation of variables in Redundant Chord

efficient in MANET. The hit ratio of the Backtracking

Chord is 74% on average and maximum 88%. The hit ratio

of the Redundant Chord achieves up to 82% and the search

latency of Redundant Chord is reduced by half of the

Gnutella in MANET(Table 2).

Table 2. Backtracking Chord vs. Redundant Chord I

5. Conclusion and future work

The P2P file search in mobile environment is in the

beginning of the study, it is progressed actively in wired

internet. The most considerable problems in mobile

network are the constrained bandwidth and mobility. In

order to develop a search algorithm appropriate for mobile

environment, we verified the existing search algorithms,

Gnutella and Chord, in MANET. According to the

simulation results, Gnutella generates too much overhead

traffic for maintaining network connections. Chord saves

bandwidth greatly with)(log NO query messages for a

search compared to Gnutella. However, the hit ratio of the

Chord is too low in MANET. Over all, existing P2P query

search algorithms consume too much bandwidth and

increase search latency to ensure search accuracy in

MANET. Therefore, we propose two kinds of algorithms

which are modified from the existing Chord algorithm,

Backtracking Chord and Redundant Chord. Since the hit

ratio of the Backtracking Chord is improved via

maintaining appropriate search latency and certain query

messages, it resolves bandwidth problems in MANET. The

Redundant Chord solves the search latency problem by

sending multiple query messages simultaneously, and also

provides relative hit ratio in MANET.

In our simulation, Random waypoint mobility model is

utilized. However, in this model, the mobile nodes move to

a certain direction. In the future work, we will adopt a

more flexible mobility model where the nodes move to

random direction to realize a real ad-hoc network like

environment. The correlation between the number of time-

out, t, the number of queries sent at once, r, and the number

of the mobile nodes will be investigated by mathematical

expression and simulation.

In this paper, hit ratio includes the error range produced

by processing overhead, and also search latency includes

the error range caused by processing time. It will be

modified via more detailed analytical model in future work.

We are working on a simulation to analyze the

bandwidth utilization according to the change of the value t

in Backtracking Chord, and r in Redundant Chord, and also

work out the optimal t and r.

References

[1] Napster, http://www.napster.com/.

[2] Gnutella. http://gnutella.wego.com/.

[3] M. Ripeanu, “Peer-to-Peer Architecture case study: Gnutella Network”,

Proceedings of the First International Conference on Peer-to-Peer

Computing, 2001

[4] Alexander Klemm, Christoph Lindemann, Oliver P. Waldhorst, “A

Special-Purpose Peer-to-Peer File Sharing System for Mobile Ad Hoc

networks”, Proc. IEEE Semiannual Vehicular Technology Conference,

October 2003.

[5] Chord project, http://pdos.lcs.mit.edu/chord/.

[6] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, Hari

Balakrishnany:‘Chord: A Scalable Peer-to-peer Lookup Service for

Internet Applications’ MIT Laboratory for Computer Science.(ACM

Conf.2002)

[7] Gnutella Protocol draft v0.6.

[8] NS2, http://www.isi.edu/nsnam/ns/

[9]T. H. Hu, B. Thai, A. Seneviratne, "Supporting Mobile Devices in

Gnutella File Sharing Network with Mobile Agents", ISCC, Kemer -

 Query msg.
Avg. search

latency(sec)

Avg. hit

ratio(%)

Network

applied

0.67~1.34 74~88
Backtracking

Chord
)log(NtO

proportion

with t

proportion

with t

Small

MANET

0.13~0.39 58~84
Redundant

Chord
)log(NrO

inverse-proportion

with r

proportion

with r

Large

MANET

Antalya, Turkey, July 2003.

[10] L. Barbosa e Oliveira, I. Guimaraes, A. A. Ferreira Loureiro,

"Evaluation of Ad-Hoc Routing Protocols under a Peer-to-Peer

Application", Proc. IEEE Wireless Communications and Networking

Conference, March 2003.

[11] X. Zeng, R. Bagrodia, M. Gerla, “GloMoSim: A Library for Parallel

Simulation of Large-scale Wireless Networks”, Proceedings of Parallel

and Distributed Simulation, 1998

[12] Charles E. Perkins, Elizabeth M. Belding-Royer, and Ian Chakeres.

"Ad Hoc On Demand Distance Vector (AODV) Routing." IETF

Internet draft, draft-perkins-manet-aodvbis-00.txt, Oct 2003 (Work in

Progress),

